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Avalanche of entanglement and 
correlations at quantum phase 
transitions
Konstantin V. Krutitsky, Andreas Osterloh   & Ralf Schützhold

We study the ground-state entanglement in the quantum Ising model with nearest neighbor 
ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This 
entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and 
continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, 
arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and 
four-point correlations reveals a similar sequence and shows strong ties to the above entanglement 
measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point 
correlation exceeds the three- and two-point correlations, well before the critical point is reached. 
Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a 
general feature of a quantum phase transition. This should be taken into account in the approximations 
starting from a mean-field limit.

Entanglement is one of the main reasons for the complexity of quantum many-body systems: the more entangled 
a quantum system is the more complex its description becomes. If we consider e.g. ground states of lattice 
Hamiltonians and have no entanglement between the lattice sites i, the quantum state is fully separable 

ψΨ = ⊗i i . As a result, it is possible to employ a mean-field description where observables Âi and B̂j at different 
lattice sites i and j are uncorrelated 〈 〉 = 〈 〉〈 〉ˆ ˆ ˆ ˆA B A Bi j i j . However, except for very few special cases (e.g., 
Kurmann-Thomas-Müller point1, 2), such a description is not exact. It is possible to improve this mean-field 
ansatz by adding some amount of entanglement. This can be achieved either directly3 or with matrix product 
states4, 5 or tree-tensor networks6–8. These descriptions make sense only if the entanglement is bounded in a suit-
able way as highlighted in ref. 9. However, one should be aware that this criterion does not apply in most relevant 
cases, where the reduced density matrix is of full rank, even though some of the eigenvalues may be small. Thus, 
its application requires approximations such as (2).

On the other hand, many interesting phenomena in condensed matter are associated with and occur at or 
close to quantum critical points, where typically the entanglement becomes relevant. As one of the simplest yet 
prototypical examples10, let us consider the one-dimensional Ising model of length L in a transverse field
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where σ̂i
x y z, ,  denote the spin-1/2 Pauli matrices acting on the lattice site i and periodic boundary conditions 

σ σ α= =α α
+ x y z, , , ,L 1 1  are imposed. For L → ∞, we have a symmetry-breaking second-order quantum phase 

transition from the paramagnetic phase at |J| < 1 to ferromagnetism at J > 110. For J = 0, we have the separable 
paramagnetic state → → → …  without entanglement while for J → ∞, the ground state corresponds to the 
ferromagnetic state ↑ ↑ ↑ … + ↓ ↓ ↓ …( )/ 2  with GHZ-type multi-partite entanglement between all L 
spins. We want to mention that this GHZ state, however, would not survive small added field in the (y, z) 
plane. Here, |→〉 is the eigenstate of σx and ↑  that of σz to the eigenvalue +1. At the critical point Jcrit = 1, the 
entanglement entropy between the left and the right half of the Ising chain diverges as ln L11.

However, this large amount of entanglement cannot be explained by entanglement of pairs alone12, as meas-
ured by the concurrence. Together with the entanglement monogamy relation13, 14 (see also refs 15–18) this 
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strongly suggests the emergence of multipartite entanglement19, 20 (triples and quadruples etc.), which will be 
studied in the following section (see the results in Fig. 1). Multipartite quantum correlations will be analyzed later 
on, also with reference to another prototypical model of quantum phase transitions, the Bose-Hubbard model.

Entanglement
In order to study the multipartite entanglement during the quantum phase transition of the Ising model, we 
employ its exact solution via Jordan-Wigner and Bogoliubov transformation to a free fermionic model21, 22 which 
allows us to obtain the reduced density matrices of two ρ ρ=ˆ îj2 , three ρ ρ=ˆ îjk3 , and four ρ ρ=ˆ îjkl4  neighboring 
spins19, 21. After diagonalizing these matrices, we find that they all possess two dominant eigenvalues p1 and p2 
while the sum of the remaining sub-dominant eigenvalues stays below 2.5% (see supplementary information). 
Thus, we approximate the two-point reduced density operators as

ρ ψ ψ ψ ψ≈ + −ˆ p p(1 ) , (2)ij ij ij ij ij1
1 1

1
2 2

and analogously for ρ̂ijk and ρ̂ijkl. Actually, the accuracy of this approximation should be even better than 2.5% in 
the weights of the density matrix: while the multi-partite entanglement of the first ψ…

1  and the second ψ…
2  eigen-

vectors can interfere destructively with each other, we checked that this is not the case for the third eigenvector 
ψ…

3  which has a different structure: for three and four spins, the state(s) of the central spin(s) are fixed to |→〉 
while the two boundary spins form a Bell state – i.e., ψ…

3  contains bipartite entanglement only, which here does 
not interfere with the multipartite entanglement of ψ…

1  and ψ…
2 . As a result, we expect that the accuracy of this 

approximation is around 0.5% or even better. Entanglement measures scale like p  since this is the weight of how 
the states are added23; therefore, this corresponds to an error of about 7%. For two spins, we checked this approx-
imation by comparing the exact concurrence with that derived from (2) and found that they are virtually indis-
tinguishable24. The approximation (2) as motivated by the dominance of the two largest eigenvalues is a great 
simplification, because we obtain rank-two density matrices, for which the three-tangle τ3 and the four-tangle(s) 
τ4 (see Methods) can be calculated exactly23, 25 for this model. Note that for the three-tangle an exact extension to 
arbitrary mixed states by the convex roof is not known so far.

In analogy to the three-tangle τ3, we call four-tangles those polynomial SL-invariants that are zero for arbi-
trary product states26 and use the notation τ i

4
( ), i = 1, 2, 3, for powers that scale linearly in the density matrix. All 

three of them essentially lead to the same output, and therefore τ4 will represent the four-partite entanglement 
content of the model. This four-partite entanglement would hence be essentially of GHZ-type because only the 
GHZ entanglement is measured by all three measures in the same way26–28. Together with the results from ref. 29 
this is an evidence for GHZ class entanglement also for four sites (for three sites see ref. 20). The quantifiers τ3 (for 
the tripartite entanglement in ρ̂3) and τ4 (for the quadripartite entanglement in ρ̂4) are shown in Fig. 1 for nearest 
neighbors. For various reasons, it is advantageous to consider τ3  instead of τ3. First, this quantity τ3  is an entan-
glement monotone30. Second, it is a homogeneous function of degree one in the density matrix ρ̂3, as the other 
measures C2 and τ4 considered here – or more general measures with the properties of probabilities. Third, this 
power τ3  facilitates a direct comparison to the correlations, see Fig. 2. For completeness, we also included the 
pairwise entanglement of nearest neighbors, as measured by the concurrence C2.

As is well-known, the concurrence first grows as a function of J until it reaches a maximum at ≈ .J 0 796 and 
later decreases again (with an infinite slope at the critical point31). The three-tangle τ3  starts to grow much 
slower at small J and reaches its maximum later than the concurrence at ≈ .J 0 89. The four-tangle(s) τ4 are even 
zero until ≈ .J 0 55 and reach their maximum yet a bit later at ≈ .J 0 94. Even though having no results for more 
spins, we conjecture that this sequence or avalanche of entanglement continues until finally, deep in the ferromag-
netic phase, we get pure L-partite entanglement of all spins. This is clear since we have the L-particle GHZ-state 
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Figure 1. The entanglement between two, three, and four neighboring spins measured by the concurrence C2 
(black), the three-tangle τ3  (green), and the four-tangle τ4 (blue) as a function of J. For the latter two, the 
approximation (2) was used. They take their maximum values at ≈ .J 0 7962

max , ≈ .J 0 8903
max , and ≈ .J 0 944

max , 
respectively – which shows the sequential increase of entanglement depth (avalanche of entanglement).
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as a ground state of the Hamiltonian. The GHZ-state is a stochastic state (local density matrix is proportional to 
{\mathbb{1}}) connected to a minimal length of 2 (see ref. 32) and therefore will maximize at least one (virtually 
all) SL-invariant homogenous polynomial measure of entanglement30. This feature survives in the odd sector of 
the symmetry group 2 of the transverse Ising model.

Entanglement versus correlations
As already mentioned before, a pure state without any entanglement is fully separable ψΨ = ⊗i i  and observ-
ables Âi and B̂j at different lattice sites i and j are uncorrelated. In the following, we shall study the relation between 
entanglement and the resulting correlations for more general states. To this end, we start with the reduced density 
matrices for one ρ ρ=ˆ î1 , two ρ ρ=ˆ îj2 , three ρ ρ=ˆ îjk3 , and four ρ ρ=ˆ îjkl4  spins and separate correlated parts via 
ρ ρ ρ ρ= −ˆ ˆ ˆ ˆij ij i j

corr , and analogously for more spins (see Methods). The correlation between the two observables 
= −ˆ ˆ ˆ ˆ ˆ ˆA B A B A Bi j i j i j

corr
 can be written as ρ=ˆ ˆ ˆ ˆ ˆA B A BTr{ }i j i j ij

corr corr  and similarly for three or more sites.
Since correlations such as ˆ ˆA Bi j

corr
 and ˆ ˆ ˆA B Ci j k

corr
 obviously depend on the observables Âi, B̂j, and Ĉk, it is 

convenient to derive an estimate directly from the correlated density matrices such as ρ̂ij
corr. For observables Âi 

and B̂j (such as the Pauli spin matrices) whose eigenvalues squared are bounded by unity (spectral norm) ≤^ �Ai i
2

 
and ≤^ �Bj j

2
 which implies for their expectation values ≤ˆ ˆA B 1i j , we obtain

∑ ∑ρ λ χ χ λ ρ= = ≤ =ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ }A B A B A BTr ,
(3)
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where λI and χij
I  are eigenvalues and eigenvectors of ρ̂ij

corr. Equation (3) shows that the Schatten one-norm 

ρ̂ij
corr

1
 of the correlated density matrix ρ̂ij

corr yields an upper estimate for the correlations ˆ ˆA Bi j
corr

 of all observ-

ables with ≤^ �Ai i
2

 and ≤^ �Bj j
2

. Obviously, this relation can be generalized to three or more sites in complete 
analogy. In the following, we shall focus on ρ̂q

corr

1
 for different number of sites q.

For two spins, it is well-known that the largest correlation function for pure states coincides with the concur-
rence33. For mixed states, this becomes an upper bound, i.e., the maximum correlation is larger or equal to the 
concurrence ρ ≥ˆ Cij

corr

1
2. Unfortunately, for three or more spins, such a rigorous bound is not known. Thus, let 

us consider a system of three spins. A pure state of the system can be represented modulo local SU(2) transforma-
tions as the normalized superposition of five local basis product states34, 35

ψ ≅ + + + +ϕA a a e a a a[ 000 100 101 110 111 ], (4)i
3 0 1 2 3 4

with 0 ≤ ai ≤ 1 and 0 ≤ ϕ < π. We generate the parameters ai and ϕ from the corresponding uniform random 
distributions and choose A such that the resulting state is normalized. Then we calculate its three-tangle τ3 and 
ρ̂3

corr
1
. The results presented in Fig. 2 for 40.000 randomly chosen states ψ3  show that τ3  is almost always 

upper bounded by ρ̂3
corr

1
. There are, however, some states for which τ3  is slightly larger than ρ̂3

corr
1
. The reason 

for this slight deviation and the characteric properties of these states will be the subject of future investigations. 
Again we consider τ3  and not τ3 because the former is a homogeneous function of degree one with respect to the 
density operator ρ̂3 and, therefore, has the same scaling properties as ρ̂3

corr
1
. Similar calculations for four spins 

Figure 2. Plot of the three-tangle τ3  versus the three-point correlation bound ρ3
corr

1
 for a random selection 

of 40.000 pure states (4) from the generalized Schmidt decomposition34, 35. Each dot in the figure corresponds to 
a single state. The thin black line corresponds to τ ρ= ˆ3 3

corr
1
. Most of the states satisfy the inequality 

ρ τ≥3
corr

1 3  (as in the case of two spins where ρ ≥ C2
corr

1 2 is valid for all pure states) but some of them 
slightly deviate from it. The lower red (a) and upper blue curve (b) are obtained for GHZ states that are made of 
two α β↑ ↑ ↑ + ↓ ↓ ↓( ) and four α β↑ ↑ ↑ +( W ) product basis elements, respectively, where 
| 〉 = |↓ ↑ ↑〉 + |↑ ↓ ↑〉 + |↑ ↑ ↓〉W ( )/ 3.
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indicate that ρ‖ ˆ ‖ijkl
corr

1 is also only an approximate upper bound for the four-tangle τ4. However, since the available 
phase space for four spins is much larger, the statistics is rather poor24.

In summary, while the two-point correlation ρ̂ij
corr and the pairwise entanglement C2 are related via the exact 

bound ρ ≥‖ ˆ ‖ Cij
corr

1 2, we only find analogous approximate relations between the three- and four-point correla-
tions ρ̂ijk

corr and ρ̂ijkl
corr on the one hand and the corresponding entanglement measures τ3  and τ4 on the other hand.

Correlations for the Ising model
Motivated by the above findings, let us study the Schatten one-norms of the correlated density matrices for two, 
three, and four neighboring spins. Note that we used the exact results for the reduced density matrices without the 
approximation (2). The results are plotted in Fig. 3. As expected from stationary perturbation theory24, 
ρ ∼ −‖ ˆ ‖ Jq

qcorr
1

1 for small J, where q = 2, 3, 4 is the number of the neighboring sites. Thus, for small J, the correla-
tions obey the same hierarchy ρ ρ ρ ˆ ˆ ˆ2

corr
1 3

corr
1 4

corr
1
 as the entanglement measures in Fig. 1, except that 

ρ̂4
corr

1
 does not vanish for finite J in contrast to τ4. However, at ≈ .J 0 8, i.e., well before the critical point, this 

hierarchy is violated as the four-point correlation ρ̂4
corr

1
 exceeds the three-point correlation ρ̂3

corr
1
. The 

two-point correlation ρ̂2
corr

1
 is still dominant in this region – this only changes near the critical point. This inver-

sion of the hierarchy, i.e., the dominance of ρ̂4
corr

1
 over ρ̂3

corr
1
 in a region within the symmetric paramagnetic 

phase, should be relevant for approximation schemes which truncate the hierarchy of correlations at some 
order36–42.

Bose-Hubbard model
One might suspect that this inversion of the hierarchy is a rather specific result due to the integrability of the 
model under consideration or may be induced by the fact that deep in the ferromagnetic (broken-symmetry) 
phase, the three-point correlation vanishes whereas the four-point and two-point correlators approach constant 
non-zero values (note that an inversion of the two-point and four-point correlations just happens at the critical 
point). In order to investigate whether the inversion of the hierarchy is a general phenomenon or indeed a pecu-
liar feature of the Ising model, let us consider the other prototypical example for a quantum phase transition10, 43, 
the Bose-Hubbard model

∑ ∑= − + +
=

+ +
=

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †( )H J b b b b b b b b1
2 (5)i

L

i i i i
i

L

i i i i
1

1 1
1

that is believed to be non-integrable44–47. Here ˆ
†

bi  and b̂i are the bosonic creation and annihilation operators at the 
lattice site i. As before, we impose periodic boundary conditions. Note that the hopping rate J is dimensionless 
because we measure it in units of the on-site interaction energy (usually denoted by U).

At unit filling =n̂ 1i , there is a quantum phase transition (in the thermodynamic limit L → ∞) between the 
Mott insulator regime where the on-site repulsion dominates (in analogy to the paramagnetic state for the Ising 
model) and the superfluid phase where the hopping rate J dominates (analogously to the ferromagnetic state). 
Deep in the Mott phase at J = 0, the ground state factorizes Ψ = ⊗ 1i i, i.e., it is not entangled. For increasing J, 
on the other hand, we get correlations such as ˆ ˆ†

b bi j  which are somewhat analogous to the ferromagnetic corre-

lations σ σˆ ˆi
z

j
z .

Unfortunately, for the Bose-Hubbard model, entanglement measures in analogy to the concurrence are 
not yet available. There exist genuine bipartite and multipartite entanglement measures for bosons, but they 

Figure 3. Norms of correlated reduced density operators for two ρ̂2
corr (red), three ρ̂3

corr (green), and four ρ̂4
corr 

(blue) neighboring spins in the transverse Ising model. At ≈ .J 0 8, i.e., well before the critical point, the 4-point 
correlations exceed the 3-point correlations. The 2-point correlations dominate both until the critical point is 
reached, afterwards the 4-point correlations prevail. The horizontal dashed lines represent the asymptotic values 
for J → ∞.
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are known only for special cases such as Gaussian states or pure states (see refs 48, 49 and references therein). 
Hence, we focus on the reduced density matrices and their correlated parts. We consider a system of finite 
size (12 bosons on 12 lattice sites) and obtain the ground state numerically for arbitrary J by exact diagonali-
zation. This allows to calculate exactly the reduced density matrices. We find that they contain, in contrast to 
the Ising model, in general more than two non-negligible eigenvalues, i.e., the approximation (2) would not 
apply here.

In analogy to Fig. 3, we plot the Schatten one-norms of the correlated parts of the reduced density matrices 
in Fig. 4. We find that – again in contrast to the Ising model – all three curves are monotonically growing and 
approach finite asymptotic values for J → ∞ which correspond to the limit of a free (ideal) Bose gas and can be 
calculated analytically. Similarly to the Ising model, we find ρ ∼ −‖ ˆ ‖ Jq

qcorr
1

1 with q = 2, 3, 4 for small J, as 
expected from strong-coupling perturbation theor y24.  This scaling imposes the hierarchy 
ρ ρ ρ ˆ ˆ ˆ2

corr
1 3

corr
1 4

corr
1
 at small values of J. However, in analogy to the Ising model, this hierarchy is 

partially inverted at ≈ .J 0 16 and ≈ .J 0 21, i.e. both well before the critical point is reached (here around 
≈ .J 0 3crit , see ref. 50 for a recent review).

Conclusions and Discussion
For the Ising model (1), we studied the entanglement of two, three, and four neighboring sites in the ground state 
by means of the approximation (2) based on the dominance of two eigenvalues. In the calculations of the respec-
tive tangles for up to four sites, we find a sequential increase of entanglement depth with growing J which we call 
avalanche of entanglement (see Fig. 1). Whereas an interpretation of the results is unambiguous up to three sites, 
for four sites there are three filter invariants τ i

4
( ), i = 1, 2, 326. They give essentially the same result, which together 

with previous analysis29, 32 is providing evidence that a state inside the GHZ class will be the main carrier of entan-
glement. We conjecture that this avalanche continues until finally pure L-partite (GHZ type) entanglement 
emerges for J = ∞. This avalanche might also explain the ln L divergence of the entanglement entropy at the 
critical point, which will be subject of future work.

Using the Schatten one-norms of the correlated reduced density matrices as rigorous upper bounds for the 
correlations (3), we find that they also yield approximate upper bounds for the corresponding entanglement 
measures (see Fig. 2). We find a partial inversion of the hierarchy of correlations well before the critical point 
is reached. Comparison with the Bose-Hubbard model as another prototypical example reveals a qualitatively 
similar behavior.

This inversion of the hierarchy is relevant for approximation schemes based on truncation36–42. One can try to 
successively improve the accuracy of these approximations by shifting the truncation to higher orders, i.e., by 
including more correlations. As an example, let us consider a quantity σ σ σ σi

x
j
x

k
x

l
x  relevant for the Ising model. 

To lowest order (mean-field limit), one could approximate it via σ σ σ σ σ σ σ σ≈i
x

j
x

k
x

l
x

i
x

j
x

k
x

l
x , i.e., by 

neglecting all correlations. As a possible first-order correction, one could include two-point correlations such as 
σ σ σ σi

x
j
x

k
x

l
xcorr

. This first-order approximation allows us to derive, e.g., the magnon dispersion relations. 
While this successive approximation procedure works well for small J, we found here that it fails for larger J, even 
well before reaching the critical point.

It might be also interesting to study the possibility of more general approximation schemes such as (2) 
based on the dominance of two or more eigenvalues of the reduced density operator. In a time-dependent 
setting one could analyze how this entanglement avalanche is affected by non-adiabatic dynamics during a 
sweep through the critical point. In fact, the number of non-zero values for the transverse Ising chain has been 
seen to grow up to four in the case of equal bipartition51, such that the approximations applied here could 
survive further.

Figure 4. Norms of correlated reduced density operators for two ρ̂2
corr (red), three ρ̂3

corr (green), and four ρ̂4
corr 

(blue) neighboring sites in the Bose-Hubbard model with 12 particles in 12 lattices sites. The horizontal dotted 
lines represent the limit of the ideal Bose gas (J → ∞). The hierarchy of correlations (first two-point, later three-
point and even later four-point correlations) is present for small J. The four-point correlations overtake the 
three-point correlations well before the critical point (here ≈ .J 0 3crit ).



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 3634  | DOI:10.1038/s41598-017-03402-8

Methods
Entanglement measures. We consider pure states of q spins with two internal degrees of freedom (qubits). 
For each number of spins q, there are corresponding SL-invariant multipartite entanglement measures. In the case 
of two spins (q = 2), the entanglement measure is unique and is given by the concurrence C2 which coincides with 
the largest correlation function for pure states33.

For three spins, the appropriate entanglement measure is called three-tangle τ3 (see ref. 13 for the definition). 
Since we want to compare it to ρ̂3

corr
1
, we consider its square root τ3  because this is also a homogeneous func-

tion of degree one with respect to ρ̂3 (for the entanglement related questions, see refs 30 and 52).
In the case of four spins, there are three in general different entanglement measures (see ref. 28)

τ τ τ= = = ., , (6)s4
(1)

1
(4)

4
(2)

2
(4)

4
(3)

3
(4)3 4 6  

Here the index s symbolizes the symmetrization with respect to the symmetric group. They possess the same 
homogeneous degree as τ3  and C2 in the density matrix.

Correlations. We consider the Hamiltonian for a system of L lattice sites of the form

∑ ∑= +
≠ 

 





ˆ ˆ ˆH H H ,
(7)1 2

1 2

where 


Ĥ  and 
 

Ĥ
1 2

 are local and two-site operators, respectively; the indices label the lattice sites. The state of the 
whole system can be described by the density operator ρ ψ ψ=ˆ . In order to study parts of the system, we intro-
duce reduced density operators for q lattice sites via averaging (partially tracing) over all other sites:

ρ ρ=… …+ 

 

ˆ ˆTr , (8)q q L1 1

where all … …  L, , : {1, , }L1  are distinct. Information about all possible spatial correlations of the lattice sites 
… q1  is directly contained in the correlated parts ρ … 

ˆ corr
q1
 of the reduced density operators. For q = 2, 3 they are 

explicitly given by

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

= −

= − − − − .
     

                 

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ (9)
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corr corr corr corr
1 2 1 2 1 2

1 2 3 1 2 3 1 2 3 1 3 2 2 3 1 1 2 3

The operators ρ … 

ˆ corr
q1
 are hermitean and their traces vanish: ρ =… 

ˆTr 0corr
q1

. They allow to calculate (connected) 
correlation functions of local operators 



Ô  as

ρ… = … .… 

 

 

ˆ ˆ ˆ ˆ ˆ( )O O O OTr (10)
corr corr

q q q1 1 1

In order to obtain quantitative estimates of the q-point correlations, it is convenient to consider the Schatten 
p-norms

∑ρ ρ λ= ≡








… … …

   

 

ˆ ˆ: Tr ,
(11)p

p

I

I p
p

corr corr ( )
1/

q q
p

q1 1 1

where λ … 

I( )
q1
 are the eigenvalues of the correlated density operators ρ … 

ˆ corr
q1
. The Schatten one-norm is also known 

as the trace norm and the two-norm is often called the Frobenius norm or the Hilbert-Schmidt norm. Note that 
the quantities ρ … 

‖ ˆ ‖p
corr

q1
 are homogeneous functions of degree one with respect to ρ … 

ˆ corr
q1
.

Assuming that the quantities …
 

ˆ ˆI O O I
q1

, where |I〉 are the eigenstates of the operator ρ … 

ˆ corr
q1
, are 

bounded by unity (or another finite number), which is the case if the eigenvalues of the operators …
 

ˆ ˆO O
q1
 are 

bounded by unity (spectral norm), it is easy to see that

∑
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λ
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